Document-Level Event Role Filler Extraction Using Key-Value Memory Network
نویسندگان
چکیده
Previous work has demonstrated that end-to-end neural sequence models well for document-level event role filler extraction. However, the network model suffers from problem of not being able to utilize global information, resulting in incomplete extraction arguments. This is because inputs BiLSTM are all single-word vectors with no input contextual information. phenomenon particularly pronounced at document level. To address this problem, we propose key-value memory networks enhance and overall represented two levels: sentence-level document-level. At sentence-level, use obtain key sentence document-level, a representations by recording information about those words articles sensitive similarity. We fuse levels means fusion formula. perform various experimental validations on MUC-4 dataset, results show using works better than other models.
منابع مشابه
Using Document Level Cross-Event Inference to Improve Event Extraction
Event extraction is a particularly challenging type of information extraction (IE). Most current event extraction systems rely on local information at the phrase or sentence level. However, this local context may be insufficient to resolve ambiguities in identifying particular types of events; information from a wider scope can serve to resolve some of these ambiguities. In this paper, we use d...
متن کاملEvent Extraction for Document-Level Structured Summarization
Event extraction has been well studied for more than two decades, through both the lens of document-level and sentence-level event extraction. However, event extraction methods to date do not yet offer a satisfactory solution to providing concise, structured, document-level summaries of events in news articles. Prior work on document-level event extraction methods have focused on highly specifi...
متن کاملMulti-Document Summarization using Automatic Key-Phrase Extraction
The development of a multi-document summarizer using automatic key-phrase extraction has been described. This summarizer has two main parts; first part is automatic extraction of Key-phrases from the documents and second part is automatic generation of a multidocument summary based on the extracted key-phrases. The CRF based Automatic Keyphrase extraction system has been used here. A document g...
متن کاملDynamic Key-Value Memory Network for Knowledge Tracing
Knowledge Tracing (KT) is a task of tracing evolving knowledge state of students with respect to one or more concepts as they engage in a sequence of learning activities. One important purpose of KT is to personalize the practice sequence to help students learn knowledge concepts efficiently. However, existing methods such as Bayesian Knowledge Tracing and Deep Knowledge Tracing either model kn...
متن کاملRefining Event Extraction through Cross-Document Inference
We apply the hypothesis of “One Sense Per Discourse” (Yarowsky, 1995) to information extraction (IE), and extend the scope of “discourse” from one single document to a cluster of topically-related documents. We employ a similar approach to propagate consistent event arguments across sentences and documents. Combining global evidence from related documents with local decisions, we design a simpl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2023
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app13042724